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“Any sufficiently advanced technology
is indistinguishable from magic.”

– Arthur C. Clarke
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Abstract

Realistic Real-Time Rendering of Global
Illumination and Hair through Machine
Learning Precomputations
Roc Ramon Currius
Department of Computer Science and Engineering
Chalmers University of Technology |University of Gothenburg

Over the last decade, machine learning has gained a lot of traction in
many areas, and with the advent of new GPU models that include acceleration
hardware for neural network inference, real-time applications have also started
to take advantage of these algorithms.

In general, machine learning and neural network methods are not designed
to run at the speeds that are required for rendering in high-performance real-
time environments, except for very specific and usually limited uses. For
example, several methods have been developed recently for denoising of low
quality pathtraced images, or to upsample images rendered at lower resolution,
that can run in real-time.

This thesis collects two methods that attempt to improve realistic scene
rendering in such high-performance environments by using machine learning.

Paper I presents a neural network application for compressing surface
lightfields into a set of unconstrained spherical gaussians to render surfaces
with global illumination in a real-time environment.

Paper II describes a filter based on a small convolutional neural network
that can be used to denoise hair rendered with stochastic transparency in real
time.

Keywords

Real-time rendering, Global Illumination, Lightfields, Hair Rendering, Realistic
Rendering, Neural Networks, Machine Learning
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Chapter 1

Introduction

When a computer has to display something on the screen, it has to decide and
set the colors of each pixel. The process of ”painting” the pixels, on the screen
or on an arbitrary image, is called rendering. This can be in order to represent
any kind of information, from text to 3D scenes.

An object in a 3D scene is most usually represented as a set of triangles
that follow its surface (often called a mesh). This is due to several reasons: on
one hand it is a very simple and straightforward way to represent an arbitrary
surface; on the other, and also in part because of the first one, until very
recently graphics rendering hardware has been almost exclusively built and
optimised to handle this specific case — rasterisation of triangles.

Rasterisation follows a very fast algorithm which computes the pixels that
each triangle will occupy on the screen and then calculates the color for each of
them individually, as depicted in Fig. 1.1. However, when rendering triangles
this way, there is no readily-available information from the rest of the scene,
only information included in the three vertices of the triangle, so seemingly
simple things, like representing reflections, become a complex matter.

Figure 1.1: Rasterisation works by determining which pixels’ centers are inside
of the triangle, and then interpolating the values of the surface properties at
the vertices.

Rendering of realistic scenes in real-time applications has improved im-
mensely over the last two decades, in part thanks to many advancements in
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4 CHAPTER 1. INTRODUCTION

hardware, but also thanks to new techniques being developed that can be used
to more closely represent reality while achieving high performance.

In contrast, Raytracing techniques such as Pathtracing, instead of attempting
to rapidly calculate the pixels that each triangle would occupy and paint them
based on the triangle’s local properties, take a physically-based approach by
calculating how all the incoming light at every point of the scene would reflect
towards the eye. To accomplish that, the rendering equation [14] needs to be
evaluated:

Lo(p, ωo) = Le(p, ωo) +

∫
S2

f(p, ωo, ωi)Li(p, ωi) |ωi · n| dωi (1.1)

Where Lo is the radiance outgoing from point p towards the outgoing
direction ωo, Le is the radiance emitted at p in the outgoing direction, f is the
bidirectional distribution function, which determines in what way (absorption,
tint, scattering) the radiance coming from direction ωi is reflected at the point
towards ωo, and n is the normal of the surface at the point. The integral is
taken over S2, the surface of the 3D unit sphere, effectively integrating all
directions around the point. Since light will come from reflections on other
points on the scene, this becomes a recursive equation.

Figure 1.2: Raytracing follows the trajectory that a ray would travel from a
point in the scene to the viewer’s eye through the screen, and paints the pixel
it crosses with the color from the point in the scene.

To calculate this, pathtracing follows the path that rays of light would have
to traverse from their source to reach the viewer’s eye, after having randomly
bounced across the scene, as represented in Fig. 1.2. This approach, from
its very definition, will already use information of the structure of the scene
to calculate the final color of each pixel. The problem is that the process of
finding the points where the light rays collide with the objects in the scene
can be slow, making this method orders of magnitude slower than rasterising
the same scene; while also producing very noisy images due to its stochastic
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nature, causing it to require many samples (i.e. rays) per pixel, and so it has
been usually used exclusively in offline rendering, for example in movies.

In recent years, high-end graphics hardware has started to include dedicated
units for ray-tracing acceleration, but even with the use of this specialised
hardware, only a few samples per pixel can be taken every frame, so aggressive
simplifications of the light interactions, as well as filtering and post-processing
of the generated images, are required to hide the noise.

The methods developed throughout the last decades for more realistic
rendering through rasterisation are of different kinds — usage of formulas based
on real-world physical observations to calculate how the light interacts with
the objects in the scene to bring more realistic illumination from lights; pre-
processing of the scene to bake some properties to be used during rasterisation
allows for taking into account some structural information of the scene that
would not be available otherwise, such as light occlusions to produce shadows;
and post-processing steps can add further effects that also take the structure
of the visible parts of the scene into account, for instance to add reflections,
as well as simulate properties of the medium in which the light travels before
reaching the eye, accomplishing effects such as volumetric light.

In this thesis we will explore two methods, using offline machine learning-
based precomputations, that can be implemented in rasterised scenes in real-
time applications to represent effects that are otherwise difficult to replicate
because of time constraints, due to the amount of extra computations they
would usually require.

1.1 Global Illumination
When rendering a 3D scene, we make a distinction between the illumination that
comes directly from light sources, which is referred to as Direct Illumination,
and the illumination produced from light reflected on other surfaces, which
is called Indirect Illumination. Together, direct and indirect illumination add
up to what is called Global Illumination. Indirect illumination is one of the
effects that is recreated easily with pathtracing, from its very definition, but is
very complex to reproduce using rasterisation, as it requires considering the
light coming onto each surface from everywhere around it, which would either
require rasterising the scene as seen from every point, or using some form of
raytracing from each point to get the contributions from objects around it
(basically replicating pathtracing), both approaches being too expensive.

As shown in Equation 1.1, we can define a function that determines how
light rays are going to reflect on a surface, called the Bidirectional Reflectance
Distribution Function (BRDF), corresponding to the f term in Equation 1.1 if
we ignore the light transmitted through objects. This function defines how and
to where a ray of light will reflect on a surface, but due to its bidirectionality,
it can also be understood as what direction the light rays would need to hit
the surface to be reflected in a specific direction, and how their color will be
affected in every case. From this we will obtain directions that are very close
to the perfect reflection direction for smooth surfaces, and a much wider range
of directions for rough surfaces, as depicted in Fig. 1.3.

A common approximation for indirect illumination in rasterised scenes uses
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Figure 1.3: Side view of the BRDF directions for an incoming ray on rough
(left) and smooth (right) materials.

reflection probes - instead of rasterising the entire surroundings of every point
in the scene, a few select points are distributed on the scene, tipically chosen by
the artists creating the scene, and the image of the surroundings is taken only
for these points, similar to what is shown in Fig. 1.4. Then, interpolation is
used for surfaces and points in-between the reflection probes. This, obviously,
can give good results for surfaces that are very close to a reflection probe,
but not so good for surfaces away from them. Moreover, reflections on rough
surfaces need be taken into account explicitly, otherwise they would reflect
images too sharply.

Figure 1.4: Left: A scene with a few reflection probes, displayed as spheres
(only visible when building the scene, not during normal rendering of the scene).
Right: What the map rendered for one of the reflection probes would look like.

A different approach is to distribute a much larger set of points around
the scene and compress the light arriving to them from all directions in a way
that can be interpolated between the points. The usual method chosen for
this is to use a set of linearly independent components that can be added up,
recreating the desired function. For example, a set of functions used to this
end is Spherical Harmonics, as shown in Fig. 1.5, which work in a similar way
to a Fourier Transform or Discrete Cosine Transform.

Another set of functions used to this effect is Spherical Gaussians (SGs)
— gaussian functions constrained on the surface of the unit sphere, each
pointing towards a different direction, and with independent amplitudes and
sharpnesses, as depicted in Fig. 1.5(d). Equation 1.2 shows the formula for
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(a) (b)

(c) (d)

Figure 1.5: (a) and (b) show a few components of spherical harmonics, as seen
in 3D, and their values on spherical coordinates, respectively. Added together
they can approximate any functions in a similar way to a Discrete Cosine
Transform (DCT). (c) shows the DCT components for an image of size 8x8, as
used in the JPEG algorithm (image from Wikipedia [6], public domain). (d)
shows a set of spherical gaussians with uniformly distributed directions around
the origin, with randomised sharpness.

spherical gaussians, with A being the amplitude, ω being the vector direction
of the gaussian, λ the sharpness of the lobe, and d the vector of the direction
for which we want to calculate the value of the function.

SG(A,ω, λ,d) = Aeλ (ω·d−1) (1.2)

1.2 Transparency
Realistic-looking refractions are another complex effect to reproduce, since they
require keeping track of where a ray of light would enter a translucent object
and where it would exit, along with the incident angles with the interacting
surfaces. That is because the light is deflected from its path by an amount
proportional to the incident angle with respect to the interacting surface and
the refraction index between the two materials.

This is usually approximated in real-time applications by a surface that
only tints the light according to the material’s color, and otherwise lets it
through unmodified, not changing its path at all. This works well enough for
translucent objects that are flat and thin, like windows, but it quickly becomes
obviously unrealistic when used for any curved surfaces or thicker objects.

When using this approximation, it is usually encoded how much a surface
will let light through with a single value in the range [0, 1] that represents
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how opaque the material is, commonly referred to as alpha — a material with
an alpha of 0 is completely transparent, and a material with an alpha of 1 is
totally opaque.

For a given list of overlapping colors and transparencies, Ci and αi respect-
ively, sorted from closest to furthest, the final color C of the pixel can be
calculated using the Porter-Duff over operator [21], as given in Equation 1.3.
Fig. 1.6 exemplifies this graphically.

C = α1c1 + (1− α1)(α2c2 + (1− α2)(α3c3 + ...)) (1.3)

A

B

BA

Figure 1.6: Semi-transparent object A is in front of object B, both with 50%
transparency. Equation 1.3 can be used to calculate the color seen in the
overlapping area.

When rasterising transparent objects, the fragments1 for each pixel need
to be rendered in order from furthest to closest to the viewer to be able to
calculate the correct color.

The classical approach to do this is to sort all the triangles before rendering,
but when the amount of triangles grows too large the sorting process can
become too costly, and this approach only really works for non-intersecting
geometry, so extra steps need to be taken to fix such geometry, further slowing
the process if the geometry is dynamic.

Methods have been developed that allow for rendering without pre-sorting
the triangles, generally referred to as Order Independent Transparency methods.

Most of these methods rely on some variation of the K-buffer [1] algorithm
(which is an adaptation of the A-buffer [2] for bounded memory), which works
by keeping a list, for each pixel on the image, of the separate values of each
fragment, together with their depths, then sorting each list when all the
geometry has been processed, and finally adding them together in order to
produce the final color.

Another way to solve the issue is to take a probabilistic approach. The
screen-door [8] method replaces transparent surfaces by a pattern of pixels that
are either fully opaque or fully transparent, more or less of them depending
on the transparency. As shown in Fig. 1.7, this can create undesired artifacts
and visible patterning. If instead we randomly discard every fragment with a

1A fragment is a collection of values produced by the rasteriser for a geometry primitive,
such as a triangle, corresponding to a pixel on the screen after it is processed by the shader.
Multiple fragments can correspond to the same pixel, for example when there is geometry
that overlaps.
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probability equal to its transparency, the average of taking several samples will
tend towards true value of the pixel while removing artifacts, as long as the
samples are uniformly random. Fig. 1.7 also shows an example of this.

Figure 1.7: The basic screen-door transparency (left) uses a predefined pattern
to decide which pixels are on and which off depending on the surface’s trans-
parency. Stochastic transparency (right) instead decides randomly for every
pixel, eliminating patterning artifacts.

All these methods solve the problem for specific situations, but there is
no general method that works equally well for all cases, and very complex
semitransparent geometry is still hard to handle.

1.3 Rendering Hair
When trying to render realistic scenes that include people, several problems
appear. Some of these problems are: skin is soft, and that is usually difficult to
animate; skin also scatters light in a very specific and complex manner, which
is usually quite difficult to simulate without the skin ending up looking more
like rubber; eyes have a quite complex geometry if looked from close-up, and it
is very easy for people to discern when eyes do not look lifelike; hair is made up
of very thin and numerous translucent geometry, both things being problematic
for real-time rendering. All these are open topics of research, but we will more
closely concentrate on the issues with the rendering of hair.

The light transport model for hair is significantly different from that of
more common surfaces. If we examine a hair strand closely, we will see that
it has a non-symmetrical structure across its length. As shown in Fig. 1.8,
the cross-section of a hair fiber is not circular, more similar to an ellipse (if
we ignore irregularities), and the surface is composed of scales, which lends
to light being reflected in a non-uniform way [15]. First the light is partly
reflected on the surface of the hair, which is called the Reflected (R) term.
Since hair is translucent, a lot of light is also transmitted through the surface,
exiting the hair in the opposite side of the fiber, what we call the Transmitted-
Transmitted term (TT). Part of the transmitted light will be reflected back on
the opposite side of the fiber and exit the hair on the same side it entered, called
the Transmitted-Reflected-Transmitted term (TRT), producing a secondary
reflection highlight, this time tinted by the light traveling through the hair. A
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common simplification of the measured BRDF from real-life hair fibers encodes
these R and TRT terms as two specular lobes with angular offsets, also shown
in Fig. 1.8.

(a)

R

Root
Root

Tip
Tip

TRT

TT

(b)

Figure 1.8: Surface of a hair fiber used for the lighting model. (a) is an electron
micrograph of the surface of a hair fiber (image by Nanjundaswamy [19] under
Creative Commons BY-NC-SA 3.0 US). (b) shows the simplification of the
surface and the BRDF lobes by Marschner et al. [15].

As initially mentioned, rendering of hair through rasterisation has several
other complications which make it a non-straightforward task.

On one hand, hairs are very thin, having a diameter ranging between 15 to
200 µm, which means that the real width of each hair is going to be significantly
thinner than that of a single pixel. Trying to render it without taking that into
account would lead to aliasing, as shown in Fig. 1.9. That is, when rasterising,
a pixel will display a triangle only if the center of the pixel is inside the triangle,
which will not always be the case if the triangles are thinner than a pixel.

Figure 1.9: Aliasing when rendering hairs that are significantly thinner than a
pixel — most pixels along the hair’s path will not be shown because they do
not cross the sampling point at the center of the pixel.

There is also the issue of the quantity of hair. A typical person’s head has
an average of 100K to 200K hairs. If we represent the hair with a few segments
for each hair strand, 10 for example, that means we will have over one million
segments to render every frame, which is orders of magnitude more geometry
than most objects will have in a typical scene for a real-time application.
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Finally there is the problem with transparency. Hair is not opaque, but
translucent (more for light hair than dark hair), and that needs to be taken
into account when attempting to draw hair that looks realistic.

Until recently, the most relevant of these problems has been the amount of
geometry to render. The usual approach to mitigate that issue has been to use
hair cards: simplifying the hair into a set of planes that cover the head and
follow the shape of the hair, and applying textures of drawn hair on the planes,
an example of which is shown in Fig. 1.10. This approach usually requires a
lot of work from the artists building the model, since it is quite difficult to
achieve realistic-looking results this way, and it is usually easy to detect. A
benefit of this approach, which is another part of why it has been popular in
the past, is that it makes the transparency issue significantly more manageable
by reducing the amount of geometry to be rendered.

Figure 1.10: Hair model simplified into hair cards. It requires a lot of work
from artists, and usually the use of this simplification becomes very evident
(3D model by Haynes [10] under royalty-free license).

Thanks to the continued increase in GPU processing power, it is now
possible to render large amounts of geometry in significantly less time, allowing
for the use of meshes of individual hair strands instead of relying on hair
cards. This makes it possible to achieve more realistic results, but brings back
relevance to the other problems mentioned previously.

1.4 Neural Networks and Machine Learning
Machine learning refers to algorithms that can use existing data to improve
their results, usually based on various statistical methods. A machine learning
algorithm is also commonly called a model, which is trained using existing
information, either labeled (matched pairs of input and expected result of the
algorithm), or unlabeled (for which the algorithm is expected to find similarities
in the data).

This is usually done by defining the model to be a parametrised function
that is expected to approximate the expected data. The parameters of this



12 CHAPTER 1. INTRODUCTION

function are then modified in an attempt to improve how well the function fits
its target shape.

These kind of techniques have been showing up in one way or another in
most areas of computer science and engineering, as they allow for more generic
algorithms to solve problems, and the field of computer graphics is no exception.
For example, there are pathtracing algorithms that use machine learning to
take better samples [4, 17, 26, 18], denoising algorithms learning shapes to
better clean noise from images [3], or data-based animation [12].

1.4.1 Gradient Descent and Expectation-Maximisation
A common approach to update the parameters of a function so it better matches
its expected value is by using gradient descent. This method relies on comparing
the output of the function with the expected values, determining how different
they are using an error or loss function, and determining in which way the
parameters should change to make the error smaller. This can be accomplished
by calculating the partial derivatives of the error function with respect to the
parameters, obtaining a gradient vector, which will point towards the direction
where the slope of the error function is highest. Changing the values following
this gradient by a small-enoug step should then lead to the error function
becoming smaller. Repeating the process enough times can bring the error
function to a local minima. Fig. 1.11 exemplifies this.

Figure 1.11: Gradient Descent algorithm: Following the direction of the gradient
vector at a point converges to a local minima of the function.

If the functions to be optimised represent a probability distribution, then
Expectation-Maximisation [5] can be used, which is a different approach that
can usually converge to a valid set of parameters faster than gradient descent.
Given a set of observed sample points, the algorithm first makes a guess about
the parameters of each distribution function; then an expectation step is done
where the probabilities that each sample point belongs to each distribution are
calculated; followed by a maximisation step, which will find a new guess of
the parameters that maximises the fit of each distribution to the samples that
belong to it.

The expectation-maximisation algorithm is usually applied to fit Gaussian
Mixtures, which are probability distributions made up of the sum of several
Normal distributions. On the surface of a sphere, the von Mises-Fisher dis-
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tribution can be used instead of normal distributions, which is a probability
distribution based on the spherical gaussians mentioned in Section 1.1.

1.4.2 Neural Networks
Artificial Neural networks (NN) are a subset of machine learning algorithms that
follow a rough simplification of how real neurons work. They are a composition
of connected artificial neurons — nodes that hold information, which they
obtain from their input connections from other neurons, and send it to other
neurons through output connections, as shown in Fig. 1.12.

IN
PU
T

Figure 1.12: Several networks with several connections between them, repres-
enting the way the data from each will flow to each other. When updating
them, the incoming values for each neuron will be added together to create its
new value.

More specifically, each neuron is represented by a single value, and each
connection has a factor that is multiplied by the value at its origin. A neuron’s
value, then, is obtained by adding-up all the products of input values and
factors.

Figure 1.13: Plot of a sigmoid (left) and a ReLU (right) activation functions,
typically used in artificial neural networks.

The multiplication and addition in each neuron represents a linear operation.
Because of this, only connecting neurons to others would not provide any benefit
to having a single neuron. To actually benefit from having multiple neurons at
once, a non-linear operation is applied after the addition, thus removing the
possibility of simplifying them. Common non-linearity functions are sigmoid
and ReLU (Rectified Linear Unit), shown in Fig. 1.13.
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To simplify creation and management of these networks, the neurons are
most frequently set up in layers, each holding a number of neurons, and two
connected layers have all the possible connections between their individual
neurons (since missing connections can be represented with a factor of 0), as
shown in Fig. 1.14. This allows for using matrix multiplication algorithms to
calculate the output values of an entire network layer at the same time. We can
represent the values of a layer and the factors of the connections in a tensor —
an extension to matrices from linear algebra to higher number of dimensions.

IN
PU
T

O
U
TP
U
T

Deep Layers

Figure 1.14: Multiple layers of neurons with full connectivity between every
two adjacent layers.

The training process for neural networks is usually called backpropagation.
That is because the algorithm it follows starts by evaluating the network with
some input, comparing the output of the network with the expected value
using an error function, and then backpropagating the derivative of the error
(the value obtained from the error function) through the network, effectively
using stochastic gradient descent optimisation of the parameters. This way,
each neuron connection receives a value that represents how its factor should
change to improve the result obtained.

Deep Neural Networks are networks that have more than two layers; the
intermediate layers are called deep layers.

1.4.2.1 Convolutional Neural Networks

When dealing with spatial data such as images, for which we would like to get
similar results even if the information is moved by some amount in the spatial
dimensions, Convolutional Neural Networks (CNNs) are helpful.

CNNs, instead of sending each value of the input through a different
connection, apply a smaller set of connections to contiguous subsets of the
input, as represented in Fig. 1.15. This small set of connections is called a filter.
Usually we will have several independent filters applied at the same time, each
producing a value for their application. The set of output values for each of
these filters for the same inputs are usually considered as the channels of the
output tensor, also represented in Fig. 1.15.

A typical convolution can produce tensors that are equal or smaller in size
than the input (for dimensions other than the channels), depending on the
size of the filters, the amount of values skipped between every application of
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...

......
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...

Figure 1.15: representation of a 1-dimensional convolutional neural network,
where a network with fewer inputs than the total amount of data points is
convolved with the data, i.e. the input is advanced and the network is applied
again, storing all the results in a new list. Each different filter produces a
different channel in the final output, as represented on the diagram on the
right.

the filter (stride), and other parameters. Transpose Convolutions, also called
Backward Convolutions or Deconvolutions, can produce tensors bigger than the
input. The backpropagation step of a convolution is usually implemented this
way, hence the name.

A typical architecture where CNNs are used consists of an initial set of
convolutions, which take the size of the input down by several orders of
magnitude (while increasing the number of channels), followed by a set of
convolutions and upsampling2 layers, which take the tensors back to the
original size.

CNNs are used, for example, for semantic segmentation [22] — determining
if a pixel belongs to a specific kind of object, by gathering structural information
around each pixel and using it to determine properties about the context of each
pixel. It is also used for more straightforward image filtering [9], colorisation
of black-and-white images [13], and many other applications.

2Operations that increase the size of the input. For example, duplicating the size by
copying each pixel next to it, or linearly interpolating for the points between pixels.



Chapter 2

Summary of Included
Papers

2.1 Spherical Gaussian Light-Field Textures for
Fast Precomputed Global Illumination

In this paper we present a method to precompute information that can be used
to reproduce global illumination in real-time.

Problem

As mentioned in Section 1.1, functions that have been used to encode the
BRDF and the incoming light to points on a scene include Spherical Harmonics
and Spherical Gaussians. Both these methods have cheap pre-computation
steps as well as being fast to evaluate.

The usual way Spherical Harmonics are used to represent incoming radiance
at a point is by first deciding a number of harmonics to use, and then their values
can be calculated for each of the three RGB color channels. Unfortunately,
spherical harmonics can produce a lot of visible banding, as depicted in Fig. 2.1.

On the other hand, when Spherical Gaussians are used to represent incoming
radiance at points on the scene, they are usually implemented by first deciding
a number of gaussians to use and pre-determining a direction for each of them.
Then their values can be obtained by applying an optimisation algorithm,
such as gradient descent or expectation maximisation, on the sharpness and
amplitude of the gaussian, with the amplitude taken as a set of 3 values for
RGB. This method also has issues with high-frequency details: since there is
only a small chance that the predetermined direction of the functions used
matches properly with those details, most places with sharp changes in color
will end up blended together, as depicted in Fig. 2.1.

Naively attempting to optimise the direction of each gaussian would result
in sets of gaussians that cannot be interpolated, as the direction for each would
need to be considered together with that of its neighbors. We show this in
Fig. 2.2.

16
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f
3 components
5 components

(a) (b)

Figure 2.1: (a) shows the problem of spherical harmonics, where high frequency
details will create high frequency noise in areas that should be flat otherwise.
(b) shows that spherical gaussians cannot usually deal with high frequency
details because they will likely end up in the wrong place and become blurred
away.

Figure 2.2: When attempting to fit spherical gaussians to a set of neighboring
lightfields, the order needs to be considered, or the interpolation will produce
undesired results. Top images show gaussians for different points in the scene,
bottom-left is the expected interpolation of the gaussians for an intermediate
point, while bottom-right is the interpolation at that point if the gaussians in
the surrounding points are not kept in the same order.

Contribution

The main contribution of this paper is a method that relies on the ability of
neural networks to produce similar outputs for similar inputs to generate the
optimised parameters for spherical gaussians that can be interpolated between
sample points.
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With this method we are able to produce a lightfield map where each
texel stores a set of several spherical gaussians with free directions, allowing
it to represent some high-frequency details that would not be representable
with other methods, and therefore much better visual results than spherical
harmonics or fixed-direction spherical gaussians.

We also adapt the work from Heitz et al. [11] to get much higher detail
reflections from a distant environment map by encoding the BRDF-dependent
visibility function into a separate set of spherical gaussians.

Methodology

We implement a convolutional neural network that will use a set of lightfield
images taken from the scene for which we want to compress the lightfields and
produces a set of parameters for a predetermined number of spherical gaussians
that, when added together, produce images as alike as possible to the input
lightfield images.

The input to the network is obtained by building a non-overlapping set of
texture coordinates for the whole scene and subdividing the texture space into
a grid. Each point in the grid that corresponds to geometry will be the center
of a ligthfield texture. Fig. 2.3 exemplifies this.

Figure 2.3: Texture coordinates used to create the lightfield map, and the
lightfield image that is obtained for each of its cells.

Each lightfield texture is then evaluated through the network and the
resulting gaussian parameters are evaluated, added together, and compared
with the input to do gradient descent on the magnitude of the difference.

Upon convergence of the network, the parameters of the gaussians for each
lightfield are gathered and stored, to be read by the real-time application that
will make use of the generated gaussians.

During real-time evaluation, when rendering each point in the scene, the
spherical gaussian parameters are sampled with linear interpolation using the
texture coordinates used to create them initially. The BRDF of the surface
at the point for the viewing direction is approximated with an anisotropic
spherical gaussian1 [20]. Then, each lightfield gaussian is analytically convolved
with the approximation of the BRDF to obtain the value that the gaussian
contributes to the illumination of the point.

1See Appendix B of Paper I for details
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The code used to produce the results presented in this paper can be found
in https://gitlab.com/ror3d/spherical-gaussian-lightfields.



20 CHAPTER 2. SUMMARY OF INCLUDED PAPERS

2.2 Real-Time Hair Filtering with Convolutional
Neural Networks

Problem

As mentioned in Section 1.3, if we want to render hair so that it looks as realistic
as possible, it becomes necessary to represent each hair strand individually.

Since hairs are extremely thin, care needs to be taken to avoid aliasing.
This means that rendering each hair strand at its real width is not usually an
option, as that would cause severe aliasing, as depicted in Fig. 2.4(b). The
naïve method to solve this would be to sample at more points for each pixel,
for example using either super-sampling or multi-sample anti-aliasing, but that
would require tens or hundreds of samples per pixel to ensure that the hair is
properly drawn.

A simple approach is to ignore the problem and render each hair one-pixel
thick, while also ignoring the transparency of the hair. That, obviously, makes
the hair look too thick and dense, as shown in Fig. 2.4(c).

(a) (b) (c)

Figure 2.4: (a) shows hair rendered at high resolution; (b) is the same mesh of
hair at real thickness with 1 sample per pixel; (c) shows the hair rendered with
1-pixel thick strands.

An approximation that avoids the aliasing relies on rendering the hairs at
one-pixel thickness, while applying extra transparency proportional to the ratio
of the hair’s thickness over the width of a pixel, as detailed in Fig. 2.5.

As mentioned in Section 1.2, several techniques have been implemented for
order-independent rendering of transparent geometry [1, 24, 23, 16], but in
general those do not work well for meshes such as hair, due to the high depth
complexity.

Stochastic methods for order independent transparency, such as stochastic
transparency [7] or hashed alpha [25], can produce unbiased results for the
rendering of the hair, but the results are also quite noisy, since not many
samples can be taken in the short period available to render each frame.

Contribution

This paper proposes a method of filtering an image of the hair rendered using
stochastic transparency to remove the stochastic spatial noise and produce
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Figure 2.5: Hairs rendered at one-pixel thickness with transparency compens-
ating for real thickness. The pink sample point shows why this approximation
is slightly biased — that point will have information from both hairs, when it
should only include information from one.

a filtered version that resembles the hair as it would look rendered through
downsampling from a much higher resolution.

The filter proposed is implemented using a U-Net [22] neural network
architecture, a set of convolutional neural networks followed by a set of transpose
convolutional neural networks, that is small enough to be evaluated every frame
in a real-time application.

Methodology

First, the color, the illumination, and the transparency of the hair, together
with the screen-space depth and tangents, are rendered at 4 samples per pixel
using multisample buffers, effectively producing an image with 24 channels.
This image is the input to the neural network.

Several convolutional layers are applied on the image, each reducing its size
by a factor of 2. Then, the same number of deconvolution layers are applied,
which also include information passed through from the original convolutions,
to bring that image back to its original size, producing an output with 3
channels representing the color, illumination and transparency of the hair.

These 3 channels output by the network are then composited together to
produce the final image.

To train the network we render the hair images at high resolution and
reduce them to the same resolution of the images used as the input of the
network, so the network will attempt to replicate high quality images.

The training is implemented using the pytorch library, and the real-time
application uses CuDNN for evaluation of the networks.



Chapter 3

Discussion and Future
Work

In Paper I we show very appealing results, with very high performance, for a
static scene; the scene needs to be static because the precomputations, as done
currently, take several hours to complete, so an obvious path for improvement
would be finding a way to speed-up the training process. One thing that was
attempted was to re-use a trained network for previously unseen inputs, or to
try to fine-tune an already trained network with new data. Our initial attempts
took a similar time to re-train as that of training from scratch, but further
research in this direction might prove more fruitful.

The method described works with isotropic spherical gaussians, but it
could potentially be made to work with different functions, if the equations to
convolve with the BRDF were derived such that they could be used in real-time.
This could provide images with much sharper details than the ones created
with the spherical gaussians.

On the other hand, as discussed in the paper, compressing the information
in some way, such as taking advantage of existing image compression methods,
or possibly some hierarchical structure, could allow for using our method with
much higher resolution or with the sampling points distributed in space instead
of only on the surfaces, which would allow for applying the precomputed global
illumination also on dynamic objects (albeit those would not be taken into
account for the global illumination of the rest of the scene).

There does not appear to be a straightforward way to have the method
work for totally dynamic scenes, since training is too slow to be done in real
time, but it would be extremely interesting to develop a method that could
take advantage of this work to that effect.

Paper II demonstrates very clean results for very noisy input working in
real-time, and very close to the ground-truth, which makes it highly appealing
to use. As mentioned in the paper, several restrictions are set on the method
that could be improved on, such as the need for the hair to be rendered in a
uniform color — multi-colored hair other than shadows or highlights would
require the network to handle full colors as input and output, instead of only
operating on the brightness value. Training for that to work properly requires
a lot more input data for the network to learn different color combinations, but
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it might still be feasible and usable in real-time.
Another drawback of the method is the time taken by the initial rendering

step for the input of the network. This is mostly caused by the large amount
of geometry used. Finding an orthogonal way to the filtering step that could
render the stochastic input in a fraction of the time would make the algorithm
presented even more appealing.
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Figure 1: Two scenes rendered with our method. The local light field for any fragment is available as a precomputed set of 16 Spherical
Gaussians in a light-field texture (512×512, 56MB). A similar texture contains the attenuation factor for a preconvolved environment map.
The combined result is images with full global illumination for glossy surfaces rendered in just over a millisecond at 1080p resolution.

Abstract
We describe a method to use Spherical Gaussians with free directions and arbitrary sharpness and amplitude to approximate
the precomputed local light field for any point on a surface in a scene. This allows for a high-quality reconstruction of these
light fields in a manner that can be used to render the surfaces with precomputed global illumination in real-time with very
low cost both in memory and performance. We also extend this concept to represent the illumination-weighted environment
visibility, allowing for high-quality reflections of the distant environment with both surface-material properties and visibility
taken into account. We treat obtaining the Spherical Gaussians as an optimization problem for which we train a Convolutional
Neural Network to produce appropriate values for each of the Spherical Gaussians’ parameters. We define this CNN in such a
way that the produced parameters can be interpolated between adjacent local light fields while keeping the illumination in the
intermediate points coherent.

CCS Concepts
• Computing methodologies → Rendering; Ray tracing;

1. Introduction

To achieve realistic computer generated images, the indirect il-
lumination of each visible surface point must be accounted for.
The current de-facto method for rendering such images is path
tracing, where the Light Transport Equation [Kaj86] is numeri-
cally estimated. In real-time applications, even on high-end GPUs
with dedicated ray-tracing hardware, only a few samples per pixel
and frame are achievable. Recently, several de-noising techniques

have been developed that reuse samples from adjacent pixels and
frames [CKS*17; MMBJ17]. These techniques show great promise
and allow for rendering scenes with fully dynamic lighting and ma-
terials. However, they are still much too expensive on mid or low-
end hardware.

Therefore, in applications where lighting, geometry, and materi-
als can be considered static, it is often preferable to rely on precom-
puting the indirect illumination in the scene and using ray tracing

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Free directionsFixed directions

Figure 2: Left: Using Spherical Gaussians with fixed direc-
tions [Pet16] (or Spherical Harmonics [RH01]) the incoming light
is projected onto the directions being considered. High frequency
changes in the illumination cannot be captured, and there will be
visible aliasing as we interpolate between two receiving points.
Right: With free directions a much higher quality can be obtained
and interpolation can be free from aliasing.

only for specific effects. When illumination can be pre-computed,
the remaining questions are how to store a sufficiently dense sam-
pling within a fixed memory budget, how to reconstruct the lo-
cal light field, and how to convolve it with the Bidirectional Re-
flectance Distribution Function (BRDF) to get the reflected light.

Common choices of Spherical Radial Basis Functions (SRBFs)
to store the light field are Spherical Harmonics (SHs) [RH01] and
Spherical Gaussians (SGs) [TS06]. With SHs, a few coefficients
are stored that describe a set of orthogonal functions on the sphere
that can be combined to approximate the light field. With SGs a
sum of gaussian lobes are used instead. Wang et al. [WRG*09]
describe how the SVBRDF (Spatially Varying Bidirectional Re-
flectance Distribution Function) can be described in this form for
each vertex, allowing for environment lighting in real time. SGs
were used to encode light-field textures in the videogame The Or-
der 1886, as described by Pettineo and Neubelt [Pet16]. The au-
thors show that, with 12 SGs with fixed direction and sharpness
(i.e. 36 floats), they can better represent the original light field than
a 3-band SH representation (24 floats). Both methods benefit from
expressing the BRDF in the same representation as the light fields,
allowing for fast and efficient convolution with the incoming illu-
mination.

Figure 2 illustrates a problem with using either SHs or SGs with
fixed directions for approximating the incident illumination. Firstly,
since the direction of the basis functions are fixed, the lobes can not
be moved to where they are most useful. A much better reconstruc-
tion of the local light field can be obtained if lobes are concentrated
where they are most needed. Secondly, as a source of illumination
moves between two of these directions, the reconstructed illumina-
tion can only respond by modifying the amplitude, causing clearly
visible aliasing in the reflections.

However, allowing for non-fixed directions is far from trivial.
Optimizing only the amplitude can be solved with a linear least
square solver. With arbitrary directions and sharpness the problem
is much more complex. Additionally, it is imperative that the pa-

rameters of the SGs are interpolatable between, e.g., nearby light
probes or texels in a light map.

The main contribution of this paper is an alternative approach to
solving this optimization problem. Instead of optimizing the SG pa-
rameters directly, we train a Convolutional Neural Network (CNN)
to generate them. Figure 3 shows an overview of our system. We
start with a scene with a unique UV parametrization and a precom-
puted irradiance texture. The goal is to create another texture, the
light-field texture, where every texel contains the SG parameters
(axis, sharpness and amplitude) required to recreate the local light
field. We first pathtrace the local light field from every texel’s posi-
tion and store it as a 2D light-field image to disk. Next, we train the
CNN using these images as input to generate a set of parameters
for a number of SGs. The sum of SGs are evaluated to predict the
light-field image, and the error is backpropagated through the net-
work. When the training has converged, the output SG parameters
for each texel are saved as the light-field texture. A benefit of this
approach is that, similarly to how an autoencoder works, the net-
work will produce similar SG parameters for adjacent input light
field images, and so a lookup in the light-field texture will produce
plausible results when interpolated.

Once the light-field texture is created, it can be used to render
the scene with indirect illumination in real time. A fragment shader
fetches an interpolated set of gaussian parameters and very effi-
ciently convolves this incident illumination with the BRDF to esti-
mate the reflected radiance towards the camera.

As a second contribution we suggest an algorithm for allowing
high-resolution glossy reflections from environment maps while
taking visibility into account. A common approximation in real-
time applications is to preconvolve the environment map with the
Normal Distribution Function (NDF) and replace the expensive
convolution with a single 3D texture lookup at runtime. The re-
maining terms of the light transport equation are moved outside of
the integral and evaluated only for the perfect specular direction.
The error of this estimation will be worse the rougher the material
is, but in practice it works well for unoccluded reflection. As illus-
trated in Figure 4, using a preconvolved environment map is prob-
lematic when visibility is to be taken into account. Even if some
representation of the local visibility is available, the convolution
with the environment map must happen at run-time for correct re-
sults.

Inspired by the recent work by Heitz et al. [HHM18], we in-
stead suggest rendering, for each texel and all directions, the pre-
convolved environment both with and without visibility. By taking
their ratio we get a spherical function (represented by a 2D im-
age) which we call the illumination-weighted environment visibil-
ity. These images are then compressed to spherical gaussians, as
described above, and can be easily evaluated for any direction in
the shader. Multiplying this result by the pre-convolved environ-
ment map gives us a high-quality estimation of the actual reflected
light.

Together, these novel contributions allow us to render static,
complex, scenes with glossy reflections from any viewpoint using
high-resolution precomputed illumination and environment visibil-
ity stored as a set of a few spherical gaussians per texel. As shown
in Figure 1, with 16 SGs per texel (56MB for a 512x512 light-field

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 3: Training a network to estimate spherical gaussian parameters. a) Given a scene and a UV unwrapping, the local light field (envi-
ronment map) is pathtraced for every texel in the lightmap and stored as an image. b) These images are then passed through a Convolutional
Neural Network where each layer consists of a convolution, max pooling and a ReLU activation. The output of final layer is passed through
a fully connected layer to produce the parameters of each SG. c) Finally, the predicted local light field is calculated as the sum of these
gaussians, and the error is backpropagated through the network. When the network is fully trained, the local light fields of each texel are run
through the network again, and the predicted parameters are stored in the corresponding texel of a light-field texture.

Figure 4: Evaluating visibility only in the center of the BRDF lobe,
to attenuate the preconvolved incoming radiance in that direction,
can lead to significant light-leaking, as in this example where the
surface should not reflect any sunlight.

texture with 16-bit floats), we achieve smooth results, comparable
to a pathtraced reference, in just over a millisecond on an RTX 2080
graphics card.

2. Previous Work

Image-Based Lighting (IBL). In 1976, Blinn and Newell [BN76]
presented their work on environment maps, i.e. images represent-
ing the incoming radiance for a single point from all directions.
For distant illumination, this technique is still in use today, usu-
ally extended by preconvolving the incoming radiance with the
BRDF to allow for plausible glossy reflections [MS16]. It is com-
mon to render several environment maps at several points in the
scene, which can then be blended together in an attempt to recre-
ate the light field at an arbitrary point [SZ12]. Unless these light
probes are extremely densely placed (requiring extensive amounts
of memory), such methods will suffer from visibility errors. We re-
fer the reader to a tutorial and survey of image-based lighting by
Debevec [Deb06] for more details on image-based lighting.

Irradiance and Precomputed Radiance Transfer. For diffuse
or very rough materials, light probes can be compactly de-
scribed using Spherical Harmonics rather than a full environment
map [RH01]. In Precomputed Radiance Transfer [SKS02], the
transfer function, i.e., how the incoming radiance is transferred to
a specific direction is precomputed. This allows for relighting of an
object without recomputing the radiance transfer. This method has
been extended to allow dynamic objects [SLS05] and to represent
soft shadows [RWS*06].

Spherical Harmonics require many coefficients not to exhibit
ringing artifacts when used to represent high-frequency functions,
so they are limited to materials with high roughness. Tsai and
Shih [TS06] represent both the transfer functions and the light
sources with Spherical Gaussians, which allows for high-frequency
lighting environments, but this method cannot easily handle spa-
tially varying BRDFs and detailed reflections for rough materials
are difficult to reconstruct. Green et al. [GKMD06] also compress
the transfer function using Gaussians. Wang et al. [WRG*09] in-
stead represent the BRDF as SGs and represent environment vis-
ibility as a spherical signed distance function. For environment
lights they sample a preconvolved environment map, which will
cause artifacts for rough lobes in certain lighting conditions (see
Figure 4). To allow for dynamic scenes, Iwasaki et al. [IFDN12]
approximate the geometry using spheres to create a visibility es-
timation which they can efficiently convolve with the lighting and
BRDF.

Xu et al. introduced Anisotropic Spherical Gaussians, which are
shown to produce better reconstructions of some functions with
much fewer lobes [XSD*13]. While we do use anisotropic gaus-
sians to represent the BRDF lobe in our real-time evaluation (see
Section 6), we use a sum of isotropic gaussians to represent the
local light field to avoid the extra amount of memory required.

None of these methods attempt to capture the local light field,
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and thus they are not applicable to interreflections and global illu-
mination rendering. In contrast, we suggest both a method for dis-
tant environment lighting with improved quality for rough BRDF
lobes, and a method in which the precomputed local light field is
reconstructed for every texel, allowing for very fast indirect illumi-
nation from any surface in the scene, as long as the scene, lighting,
and materials can be considered static.

Xu et al. [XCM*14] derive an expression for a SG representing
the reflected radiance from one triangle and of a node in a hierar-
chical representation of the scene, allowing for diffuse and glossy
one-bounce interreflections at interactive frame-rates. In the work
by Meder and Bruderlin [MB18], a hierarchy of Virtual Spheri-
cal Gaussian Lights (VSGLs) is generated by mip-mapping a Re-
flective Shadow Map. When shading, a predetermined number of
VSGLs are importance sampled from the hierarchy and convolved
with the BRDF, expressed as a SG. This method greatly improves
the quality of reflections compared to standard Virtual Point Light
sampling.

In several of these works [TS06; WRG*09; XSD*13] a method
is required to fit a set of Spherical Gaussians to an environment
map, which is achieved in an iterative process by first separately
solving for directions and sharpness using the L-BFGS-B algo-
rithm [ZBLN97] and then projecting the amplitude using a least-
squares solver. In the work by Vorba et al. [VKŠ*14], the sphere of
incoming radiance is projected to a 2D plane and a standard Gaus-
sian Mixture Model (GMM) is used, rather than Spherical Gaus-
sians. In their work on Normal Map Filtering [HSRG07], Han et al.
instead use the von Mises-Fisher distribution to represent the Nor-
mal Distribution Function in filtered mipmap levels. Similarly to
Green et al. [GKMD06], they add a term to the likelihood function
that enforces coherency in directions for neighboring lobes, to al-
low for interpolation. All three use the Expectation-Maximization
(EM) algorithm to efficiently estimate the gaussian parameters.

Vorba et al. [VKŠ*14] use bi-variate Gaussians to represent in-
coming radiance but in an off-line rendering context. They maintain
a spatial cache of directional gaussian distributions to approximate
a PDF for the incoming radiance. The renderer then uses only the
closest cached distribution to importance sample new directions, so
no interpolation between distributions is required.

Real-Time Indirect Illumination. The body of work on real-time
indirect illumination is vast and spans decades. We refer the reader
to the excellent STAR report by Ritschel et al. [RDGK12] for a
detailed survey, and will only cover the most relevant works here.

Much recent work relies on rendering a very noisy image using
real-time path tracing and denoising the results, e.g. by factoring
the LTE and using carefully chosen filters [MMBJ17], or training
a recursive autoencoder [CKS*17]. These methods can work very
well but are still quite costly even on high-end hardware.

Faster, and more approximate, methods include Voxel Cone
Tracing [CNS*11] where a low-resolution voxel representation of
the scene is updated and ray-traced every frame, Photon Splat-
ting approaches [ML09; MSK*16], and Light Propagation Vol-
umes [KD10]. Despite often being able to produce very good re-
sults, these algorithms are rarely used in the industry due to their
relatively high cost. More often, a combination of sparse precom-

puted illumination and very approximate screen-space methods,
e.g., screen-space reflections [MM14] and screen space ambient oc-
clusion [Mit07], are used. The work by McGuire et al. [MMNL17]
falls somewhere between; precomputed environment maps, includ-
ing normal and distance information, are calculated for sparsely
placed light probes, which are then ray marched for each pixel to
estimate the color of the reflecting surface.

Neural network approaches. Ren et al. [RWG*13] divide the
scene into small sub-spaces and store a Radiance Regression Func-
tion (a small NN) in each, which approximates the outgoing radi-
ance given the viewing direction, surface position, and surface nor-
mal. [GvSS17] shows that an image consisting of separate entities
can be disentangled into one image per K objects by learning a sep-
arate representation vector for each object and a function (a neural
network) that allows them to associate each pixel with a specific
object. Somewhat similarly, in our method, a CNN learns to map
features found in the input light-field images to specific SG param-
eters.

In the work of Hermosilla et al. [HMRR18], a sparsely sampled
point cloud of the scene is processed by a Convolutional Neural
Network to obtain abstract features. A second network is trained to
process these features, along with the point cloud, to obtain, e.g.,
AO values for each point. A high-quality shaded image can then be
produced, at interactive framerates, by feeding the network the visi-
ble points of a 2D image (the GBuffer). The method produces plau-
sible values for points it has not previously seen. View-dependent
global illumination is not handled by this method.

Our method is somewhat related to the problem of inverse graph-
ics techniques, where the goal is to find scene parameters given
observed images. Maximov et al. [MRF18] train a network that
describes a Deep Appearance Map (DAM) which, given a normal
and view direction, outputs the correct radiance for a specific mate-
rial. They then train a separate network that, given an input photo-
graph, can produce a new DAM very efficiently. Several recent pa-
pers have made use of a differentiable renderer [LADL18; LHJ19]
which can compute derivatives of arbitrary scene parameters from
the rendered image to find optimal values. In the work by Chen
et al. [CGL*19], a target image is fed through a CNN to predict,
e.g., vertex positions which are in turn processed by the differen-
tiable renderer to produce an image. Through back-propagation,
the CNN can be updated to improve the estimated vertex positions.
Similarly, Wang et al. [WRM17] train a network to reproduce the
outgoing radiance given a material, light and view direction. Since
it is differentiable, they can then optimize these parameters for a
target photograph, allowing for, e.g., inserting new objects in the
image with plausible materials and lighting.

Interpolating between environment maps can arguably have sim-
ilarities to constructing images for novel view points. There, Deep
Neural Network (DNN) approaches have increasingly gained at-
traction [FNPS16; ZTF*18; KWR16; SWS*17; FBD*19]. How-
ever, these methods do not directly lend themselves for efficiently
compressed light-field representations and, when applicable, real-
time evaluation is much more expensive than our proposed method.
In these methods, neural networks are used to predict the result,
which is costly even with hardware acceleration. We only use a
network to compute the SG parameters, which are then trivially
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interpolated at run-time. DNNs have also been used for other re-
lated tasks, such as real-time light field reconstruction [CWZ*18;
MKU13], approximate global illumination [TF17], and BRDF es-
timation from photos [AAL16], to mention a few.

3. Light-field Images

We store the gaussian parameters that approximate the local light
field for each texel in a light-field texture, so all surfaces in the
scene need a unique UV mapping. We follow a method similar to
Rakhteenko’s [Rak18] to obtain the positions and normals for each
texel in the light-field texture while avoiding artifacts at seams and
at points that lie inside other objects. Using these positions and
normals, we compute a light-field image, a 2D image with the inci-
dent radiance projected from the sphere. For this we use a GPU-
accelerated path tracer implemented using Optix [PBD*10]. We
found an environment map size of 128× 128 to be sufficient for
the fidelity we can reconstruct and have used that size throughout
the project. These light-field images are saved to disk in an uncom-
pressed 16 bit float format, and sum up to tens of GBs for each of
our test scenes.

4. Optimizing the SG parameters

A single spherical gaussian has the form: G(v;u,λ,µ) = µeλ(v·u−1),
where u is the axis of the gaussian lobe, µ is the amplitude, and λ

is the sharpness. For each texel, t, we want to approximate each
channel, c, of each pixel, i, in each light-field image, Tt(v), as a
sum of N spherical gaussians:

Pic =
N

∑
j

G(vi;u j,λ j,µ jc) =
N

∑
j

µ jceλ j(vi·u j−1), (1)

where vi is a direction corresponding to pixel i and depends on
the spherical projection used. Therefore, the problem is to optimize
all SG parameters such that the L2 loss is minimized:

all texels

∑
t

all pixels

∑
i

all channels

∑
c

(
N

∑
j

µtc je
λt j(vi·utj−1)−Ttc(vi)

)2

. (2)

The number of parameters to optimize scales with the number
of texels in the light-field texture. Even with a very small light-
field texture of 128× 128 texels and 16 SGs, the number of free
parameters to optimize is 1.8M. Additionally, if the gaussians for
all texels in the light-field texture are optimized independently, the
converged parameters can differ very much between neighboring
texels in the light-field texture, resulting in severe visual artifacts
when interpolated.

To enforce locally coherent sets of SGs to solve this, previous
work has suggested explicitly aligning the axis of adjacent SGs
during the optimization task [GKMD06; HSRG07]. We show in
Section 7 that, for our problem, this slows convergence and either
blurs the resulting reflections, or leaves undesirable artifacts along
lines where the optimizer could not resolve conflicting axes.

Instead, we propose a novel formulation of the problem. Rather

than trying to optimize the SG parameters directly, we train a Con-
volutional Neural Network to produce good SG parameters given
an input light-field image (see Figure 3). The motivation for our
approach is twofold: First, by making the parameters a function of
the input image, we encourage similar images to produce similar
parameters. This is not guaranteed but, just as an autoencoder will
cluster similar images in latent space, our network will tend to make
the SG parameters’ trajectories locally continuous in the light-field
texture, allowing for interpolation. Secondly, rather than training
all SG parameters in isolation, the CNN is shared among all texels.
Therefore, updating the network to perform better for one texel is
likely to improve the result for similar inputs. As will be shown in
Section 7, this improves convergence dramatically.

An overview of our network is provided in Figure 3. The input
is a 2D light-field image obtained as above, to allow for 2D con-
volution. We use the octahedron projection suggested by Meyer et
al., due to its simplicity [MSS*10]. Note that this projection does
not give equal projected area in all directions, which must be ac-
counted for during training. Each layer of the CNN consists of a
convolution, max pooling, and ReLU activation. The output of the
last layer is the input of a fully connected layer with N ×M out-
puts, where N is the number of SGs used and M is the number of
parameters per SG. Next, the output image is generated by evalu-
ating the sum of gaussians defined by these parameters (Eq 1). The
predicted light-field image is compared to the input image and the
loss is propagated backward through the network. In the following
paragraphs we will go through each of these steps in detail.

Encoder Network. During one epoch of training, each light-field
image is passed through the CNN to produce the predicted SG pa-
rameters. Each CNN layer performs a convolution of 3× 3-pixel
spatial support and a ReLU activation, followed by 2×2 max pool-
ing to produce a new image of half the size. The first convolution
layer produces an image with 32 channels and each of the three sub-
sequent layers doubles the number of channels, resulting in a final
image of 8×8 feature vectors with 256 channels. This is then used
as input to a fully connected layer, without activation function, that
outputs an N ×M matrix of real numbers, each taken to represent
one of the M parameters in one of the N SGs. The hyperparameters
of the network were found empirically, and kept as low as possible
without introducing a visual degradation of the result of our more
challenging scenes.

Loss Function. Once the constrained SG parameters are avail-
able, we can run a final kernel to reconstruct the predicted light-
field image. For each pixel and channel we evaluate the sum of
the predicted spherical gaussians using Eq 1. Since the input and
the predicted images represent radiance, which may be of high dy-
namic range, we minimize the L2 log loss function: (log(Tic +1)−
log(Pic + 1))2. This ensures that very high energy values (e.g., di-
rectly visible light-sources or specular highlights) are not given too
much importance compared to darker areas. The details of back-
propagating the gradient of the L2 log loss with respect to each
parameter are given in the Appendix A.

At this step we take into account that the projection used is not
area-preserving: to avoid some pixels having more weight, their
gradient contribution needs to be scaled relative to their unprojected
solid angle.
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(a) (b) (c) (d) (e)

Figure 5: Two of our scenes with: a) Only diffuse component from irradiance map, b) Reflections from preconvolved environment map, c)
Environment visibility using 16 SGs, d) Interreflections using 16 SGs. e) Is a path-traced reference.

Constraints. During backpropagation we enforce constraints on
the generated parameters by modifying their gradients depending
on the type of parameter: the axis of the SG are constrained to be
of unit length, and the amplitude and sharpness are constrained to
be positive. We will note that, while the axis could be expressed
using only two values, e.g. spherical coordinates, this would cause
discontinuities both for the training network and for the real-time
renderer when interpolating between directions. Also, while a nega-
tive amplitude is not necessarily erroneous, we found that enforcing
strictly positive amplitudes consistently improved our results.

Optimizations. There are two non-obvious optimizations we have
employed in the training. First, a pixel of the input image contains
the average incoming radiance from a small set of directions, rather
than a single direction. This must be accounted for when training,
otherwise the network can overtrain and produce unwanted arti-
facts. However, evaluating Eq 1 for several directions for each pixel
would be very costly so, instead, we randomly jitter the direction
used for evaluation and take a single sample, which we found to
be sufficient to avoid overtraining. Secondly, the path-traced input
images only have valuable information in the hemisphere centered
on the normal. Therefore, we do not let directions, v, below the
normal, n, contribute to the gradient at all.

5. Illumination Weighted Environment Visibility

Ignoring visibility, mirror reflections from an environment map can
be achieved with a single texture lookup. For glossy materials,
modern applications usually employ some kind of Torrance Spar-
row BRDF [TS92], making the light reflected to the camera from
the environment be:

Lo(ωo) =
∫

Ω

D(ωh)G(ωi,ωo)F(ωo)

4 |ωo ·n| |ωi ·n|
LE(ωi)VE(ωi) |ωi ·n|dωi,

(3)
where ωo is the direction to the camera, ωh is the half vector, Ω is
all directions on the hemisphere, D is the Microfacet Distribution
Function, G describes attenuation due to masking and shadowing,
F is the fresnel term, and n is the surface normal. The visibility
term, V , is often ignored. To achieve the look of a glossy mate-
rial, without sampling the environment map excessively, a common
trick is to preconvolve the D(ωh)LE(ωi) term for varying material
roughnesses into a 3D texture, assuming a surface facing ωo, and
then approximate the reflected light as:

Lo(ωo) =

(∫
Ω

D(ωh)LE(ωi)dωi

)
G(ωr,ωo)F(ωo)

4 |ωo ·n| |ωr ·n|
|ωr ·n| , (4)

where ωr is ωo reflected around the normal. This approximation is
increasingly incorrect for rougher materials, and for grazing view-
ing directions, but often looks plausible and is commonly used in
practice. Alternatively, a dominant reflection vector can be calcu-
lated by shifting the specular reflection vector towards the normal
at grazing angles [Seb14]

While our light-field texture could contain illumination from the
environment, that would be the same for every point in the scene so,
rather than spending SGs on reconstructing the environment map
at every texel, it is preferable to make use of the existing high-
resolution pre-convolved environment map. The most obvious ap-
proach might be to use a texture of sums of SGs to approximate
the visibility function, VE(ωi), but for rough materials this would
be insufficient, as illumination is contributed from a larger cone of
directions.

Instead, we extend an idea recently published by Heitz et
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Table 1: With no additional constraint, optimizing the SG parameters directly (EM or GD) causes disturbing artifacts between texels with
very different solutions. Adding a regularization constraint (aligned axes) can alleviate this problem, but dampens the system, causing it to
converge with a far from optimal result. By using a single CNN to produce all sets of SG parameters, local coherence between sets of SGs is
enforced and the final MSE, which compares the input lightfield image with its obtained SG representation, is much smaller. The insets show
the predicted light-field image for one texel (compare to the ground-truth light-field image in the inset of the pathtraced image).

al. [HHM18], where correct soft shadows are computed by com-
bining analytic area-light illumination and denoised, raytraced vis-
ibility. They suggest estimating the illumination-weighted shadow

WS(ωo) =

∫
Ω

R(ω)L(ω)V (ω)dω∫
Ω

R(ω)L(ω)dω
, (5)

where R is the cosine weighted BRDF, L is the incoming radiance
from the light-source and V is the visibility. This term is stochasti-
cally estimated and then multiplied by the exact analytical estima-
tion of the unshadowed illumination,

∫
Ω

R(ω)L(ω)dω.

In our case, we consider the incoming radiance from an envi-
ronment map, rather than an area light, and we have no means of
evaluating that analytically. We can, however, preconvolve the un-
occluded environment map:

U(ωo) =
∫

Ω

D(ωh)LE(ωi)dωi, (6)

and store the result in a 3D texture. We then precompute the
illumination-weighted environment visibility:

WE(ωo) =

∫
Ω

D(ωh)LE(ωi)V (ωi)dωi∫
Ω

D(ωh)LE(ωi)dωi
, (7)

for each light-field texel using a path tracer. This function we also
represent using SGs, trained as described above.

Finally, in the real-time shader, we can multiply the precon-
volved environment illumination with this estimation and, again,
approximate the remainder of the LTE using the perfect specular

reflection direction:

Lo(ωo) =U(ωo)WE(ωo)
G(ωr,ωo)F(ωo)

4 |ωo ·n| |ωr ·n|
|ωr ·n| (8)

As shown in Table 3, this way we can achieve plausible, high-
resolution, glossy reflections from an environment map with vis-
ibility at the small cost of one environment lookup and evaluat-
ing a sum of spherical gaussians. This technique can be used on
its own or in combination with the method described in the pre-
vious section. Note that while we compute the full, three-channel,
illumination-weighted environment visibility, it would also in many
cases be sufficient to use a monochrome result, reducing the
amount of memory traffic.

6. Real-time Algorithm

To render the images shown in this paper we have used a deferred
shading pipeline and applied the lighting from our light-field tex-
tures and environment visibility in the global lighting pass.

The light-field and environment visibility textures containing the
gaussian parameters are read from disk and stored in texture arrays.
Although our light-field texture could be used for diffuse reflec-
tions as well, we instead use the existing precomputed irradiance
light map, and use the light-field texture only for glossy reflections.
All illumination in the scenes comes from emissive surfaces or the
environment.

The steps to apply the illumination from the light-field texture,
for each pixel in the fragment shader, are:
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1. Fetch position, normal, uv-coordinates, and material properties
from the G-buffer.

2. Look up irradiance in the precomputed texture and calculate dif-
fuse reflection.

3. Calculate the (anisotropic) SG that represents the D(ωh) term
from the material properties.

4. Fetch one SG at a time from the light-field texture (7 parameters,
i.e., two texture lookups per SG) and convolve it with D.

5. Calculate the other BRDF terms F, G, and the dot products in
the divisor for the perfect specular direction.

6. Multiply the obtained terms to obtain the glossily reflected radi-
ance for this SG and accumulate it to the total glossy reflected
radiance from the light-field texture.

To evaluate and convolve the spherical gaussians, we follow Pet-
tineo [Pet16], the relevant definitions from which have been in-
cluded in Appendix B, and we refer the reader to the paper by Wang
et al. [WRG*09] for a full derivation.

The steps to render the environment map reflections using the
illumination-weighted environment visibility method are:

1. Fetch position, normal, uv-coordinates, and material proper-
ties from the G-buffer (re-use the information already obtained
when applying light-field texture).

2. Based on material roughness, look up U(ωo) from the precon-
volved environment map.

3. Fetch each SG (two texture lookups per SG) from the visibility
factor texture and evaluate it in the reflected direction. Accumu-
late the evaluated value to obtain the visibility factor WE(ωo)
for that pixel.

4. Calculate glossily reflected radiance from the environment ac-
cording to Eq 8.

7. Results

The evaluation of our method was performed on an Intel core i7-
8700 with an RTX 2080 graphics card. The training is implemented
using nVidia’s CUDA and cuDNN, and the real-time renderer is
implemented in OpenGL. All scenes are lit only by our proposed
method, either from emitting surfaces or environment maps. Direct
lighting can be orthogonally added with any standard method.

Direct optimization of SG parameters. We primarily compare
our suggested method of using a CNN to generate the SG param-
eters to a direct optimization of the parameters using Gradient De-
scent (GD). We have chosen a Gradient Descent solver, as that lets
us train using the same initialization, loss function, and parameter
gradients, allowing us to evaluate the benefit of using a CNN in
isolation. We have additionally performed one comparison with di-
rectly optimizing the gaussian parameters using Expectation Maxi-
mization (EM) [HSRG07; HZE*19], by normalizing the amplitude
of the SGs so the integral over the sphere adds up to 1, letting us
treat the sum of them as a von Mises-Fisher mixture. We have ob-
served that EM can converge much faster and to a better MSE result
than GD (see Table 1), even though it’s goal is not to optimize for
MSE.

As expected, adjacent sets of SG parameters can not be smoothly
interpolated if the parameters are optimized in isolation. To
remedy this, we add the regularization constraint suggested by

Green et al. [GKMD06] to GD optimization, and an alignment
term [HSRG07] to EM. In both algorithms, the axes of the SGs are
pushed towards the average of adjacent texels’ axes. Introducing
a constraint alleviates the problems slightly but, when converged,
the reflections still show strong artifacts along lines where one SG
changes too quickly. If we increase the weight of the constraint fur-
ther, it dampens the system and the training converges at a much
higher MSE. The result is very blurry reflections.

In contrast, when training a CNN to generate the parameters, co-
herence between nearby sets of gaussians is maintained indirectly,
still allowing parameters to change quickly when doing so does not
affect the MSE. This leads to a much better MSE for the converged
result and the images obtained when using the SGs for reflection
are much closer to the pathtraced reference.

100 101 102 103 104
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Our Method (128x128)
Our Method (256x256)

Figure 6: Convergence for a simple scene with light-field textures
of varying size.

Using a CNN to produce the SG parameters also scales very well
with the resolution of the light-field texture, as illustrated in Fig-
ure 6. Here, we can see that, while each epoch of training will take
time proportional to the number of input light-field images, the time
to convergence is essentially unaffected. Using our method, train-
ing is converged after approximately three hours, regardless of the
light-field texture resolution. With a direct optimization of param-
eters (here without enforcing coherence between sets of SGs), the
time to convergence is proportional to the number of input images.
The average MSE of the final predicted light-field image is also
much better with our method and, interestingly, improves with in-
creased resolution.

Quality. Table 2 shows a comparison of our method for render-
ing images with precomputed light fields, using varying numbers
of SGs per texel, and a path-traced reference. The scene is a simple
test scene containing objects with a material of increasing rough-
ness (0.2, 0.3, 0.4, and 0.5, GGX BRDF [WMLT07]) from left to
right. The scene is illuminated by a number of emitting arcs that
can be seen in the background. In the right column we see the light
field as it was reconstructed for one of the pixels. The resolution of
the light-field texture is rather small (256× 256), to show that the
gaussians can be interpolated with very plausible results.

For the three rightmost objects (roughness >= 0.3), the recon-
structed light-fields are sufficient to produce an image that matches
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Rendered image: Reconstructed light field

R
ef

er
en

ce
64

SG
s

32
SG

s
16

SG
s

64
Fi

xe
d

SG
s

32
Fi

xe
d

SG
s

Table 2: Quality of reflections compared to a path-traced reference
for varying numbers of SGs per texel. In the right column is the
reconstructed light field for one pixel.

the path-traced reference quite well, even with 16 SGs. At lower
roughness levels, the remaining errors become more obvious and
on the clear, flat plane the reflections might not be acceptable even
with 64 SGs. On a curved object, or a textured material (see, e.g.,
Figure 1b), the quality of highly glossy reflections can be quite suf-

ficient with as few as 16 SGs. Looking at the leftmost plane, We
can identify two main sources of error. First, since the reconstructed
light-field image consists only of a sum of gaussians, straight, hard
lines are difficult to reconstruct, leading to somewhat smudgy re-
flections. Secondly, in some places we can see what looks like folds
in the flat plane. These artifacts appear when a SG changes direc-
tion quickly over a few pixels, which the network might deem nec-
essary to reduce the overall error.

The two bottom rows show the results when using fixed direc-
tions as in previous work [Pet16]. Here, even the most rough ma-
terial is clearly not comparable to the path-traced reference, and
the errors are even more visible in motion, as can be seen in the
accompanying video. This is not surprising when looking at the
corresponding light-field image. The available SGs are necessarily
spread uniformly over the sphere and the majority of them do not
contribute at all.

In Table 3, we show a similar scene, but illuminated by an en-
vironment map, and using our precomputed illumination-weighted
environment visibility method. While reflections are not quite as
sharp as in the path-traced reference, our method works as a very
convincing visibility estimator for any direction even with this quite
challenging, high frequency, HDR environment map. Note in the
right column that the reconstructed illumination weighted environ-
ment visibility is not a simple visibility map, but an attenuation
factor for the preconvolved environment map.

R
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ce
64

SG
s

16
SG

s

Table 3: Quality of illumination weighted environment visibility
compared to a path-traced reference for varying numbers of SGs
per texel. In the right column is the reconstructed visibility for one
pixel.

Convergence. In Figures 7a and 7b, we show the loss as a func-
tion of the number of epochs the network has been trained. In all
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Figure 7: Convergence of the networks trained for Tables 2 and 3,
and for Figure 1.

of our tests, the MSE improves only very slightly after 128 epochs,
and in general, a good result is obtained after 30 epochs. In the first
graph, each epoch took approximately one minute to train, and in
Figure 7b, which has a larger light-field texture (512× 512), each
epoch took approximately five minutes. In Figure 7a, we also show
the convergence when training for fixed directions. Here, we could
reach convergence by directly optimizing the parameters with gra-
dient descent.

0 10 20 30 40Epoch

10−2

10−1

M
SE

Changed Ball: trained
Changed Ball: random
Room: trained
Room: random

Figure 8: Convergence when starting with a pre-trained network.
The network is initialized with the values obtained from training for
Figure 1b and then trained for two different scenes. The Changed
Ball scene is very similar to the one the network is trained for, and
the Room scene is the scene shown in 1a.

To evaluate how general the trained network is, we have exper-
imented with initializing the network weights with the converged
weights for a different scene. The results are shown in Figure 8. We
trained the scene shown in Figure 1b to obtain an initial network
state and then trained two different scenes. One of these scenes
was obtained by moving objects around in the original scene, and
the other is the scene shown in Figure 1a. Although the MSE ob-
tained after the first few epochs was slightly better than for random
initialization, we did not find that a pre-trained network improved
convergence in either case. We believe the old input images, al-
though similar, do not contain sufficiently similar features for the
network to generalize.

Performance. Finally, in Figure 9, we show the time taken to ren-
der each frame of the accompanying videos. All images are ren-
dered at a resolution of 1920 × 1080, and the times shown are
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Figure 9: The time taken for our deferred shading pass, including
evaluation of indirect illumination from light-field textures, for each
frame of the accompanying videos.

the time taken for the Deferred Shading pass, which evaluates all
SGs (the total frametime includes an additional 0.2ms for rendering
the GBuffer). Not unexpectedly, the performance is mostly propor-
tional to the number of SGs evaluated. Since evaluating and con-
volving spherical gaussians is very cheap, the costly part of our
approach is the number of texture fetches required. That memory is
the bottleneck is further evidenced by the fact that performance im-
proves significantly when we use 16 bit floating point values rather
than 32 bit to describe our SG parameters. Since using 16 bit floats
has no visible impact, that is what we have used in all meassure-
ments in this paper. We also attempted to further reduce the size of
our light-field textures by converting them to 8 bit values. This had
a significant impact on quality, however, and did not improve per-
formance much. To reduce the memory footprint further, it might
instead be possible to use any of the compressed texture formats
available in hardware, but we have not yet explored this further.

8. Conclusion and Future Work

We have shown that the quality of light-field textures, represented
by Spherical Gaussians, can be greatly increased by allowing for ar-
bitrary axes. We suggest training a Convolutional Neural Network
to produce appropriate parameters for these SGs, rather than opti-
mizing the spherical gaussians’ parameters directly, and show that
good results are obtained, for complex scenes, within a few hours
of training. Additionally, we suggest a novel method for approx-
imating environment visibility, by precomputing the illumination
weighted environment visibility, and show that the same network
can be used to create the SGs describing this function. Our real-
time indirect illumination algorithm is extremely fast on modern
high-end hardware and should perform well within real-time even
on much older hardware or even portable devices.

Generating one of the converged ground-truth images shown in
Figure 5e takes about 5 minutes on our RTX 2080 card, with an
Optix renderer. A noisy, but recognizable, picture can be rendered
within seconds. By significantly simplifying the allowed types of
light-transport and scene-geometry, and making heavy use of tem-
poral denoising filters, a pathtraced image can be obtained at in-
teractive framerates (see e.g, QuakeRTX). For high-quality scenes
and arbitrary lighting, fully dynamic solutions are still not avail-
able, however. Our method admittedly requires hours of baking and
training as a preprocess (around 8 hours of baking and 6 of train-
ing), but allows for good quality global-illumination images for a
time budget of 1-2 milliseconds per frame (see Figure 9).
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In this work, we have concentrated on storing the SG parameters
in two-dimensional textures, but another promising area would be
to approximate densely placed light probes, which would allow dy-
namic objects to reflect the static scene. Although our examples do
not require much memory for the light-field textures, a larger scene
might require much higher resolution and then the memory cost
of our method would naturally grow. Therefore, another interesting
area of future work is to further compress the light-field data. This
could be achieved as simply as using hardware compression for the
textures, or it might be possible to take advantage of the coherency
between texels in the light-field texture.
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Appendix A: Partial Derivatives for back propagation

We use the L2 log loss function when training, defined as follows:

L(P) = (log(T +1)− log(P+1))2, (9)

where P is the predicted value for a pixel in a light-field image,
and T is the target value. The gradient of the L2 log loss function
with respect to this pixel is:

dL(P)
dP

=−2
log(1+T )− log(1+P)

1+P
(10)

However, we need to backpropagate the gradient of the L2 loss
with respect to each parameter. The chain rule gives us that the
gradient of a specific parameter pk is:

dL
dpk

=
1

IC ∑
i,c

dPic

dpk

dL(Pic)

dPic
, (11)

where I is the total number of pixels and C is the number of chan-
nels. Hence, for each pixel and channel, we must find the partial
derivative of Eq 1 with respect to each of the parameters and add
that contribution to the parameter’s gradient. For the different pa-
rameter types, these derivatives are:

dPic

dµ jc
= eλ j(vi·p j−1) (12)

dPic

dλ j
= µ jceλ j(vi·p j−1)(vi ·p j −1) (13)

dPic

dx
= µ jceλ j(vi·p j−1)

λ jx (identically for y and z) (14)

Appendix B: BRDF as Spherical Gaussians and SG Convolution

In the real-time rendering of the reflection SGs we treat the BRDF
function as a spherical gaussian to be able to convolve it with the
spherical gaussians describing the incoming light field for a texel.
These formulas have been adapted from [Pet16], where an in-depth
explanation on how they are derived is also given.

We use the Cook-Torrance BRDF:

f (ωi,ωo) =
F(ωo,ωh)G(ωi,ωo,ωh)D(ωh)

4(n ·ωi)(n ·ωo)
, (15)

and the following definition of a Spherical Gaussian:

G(v;µ,λ,a) = aeλ(µ·v−1). (16)

The SG approximation to the D term that we use is defined as
follows:

D(ωh) = e−(arccos(ωh·n)/r)2
≈ G(ωh;n, 2

r2 ,
1

πr2 ), (17)

where r is the roughness of the material.

This gaussian is defined in the half-vector domain, and we need
to convert it to the same domain as the SG it will be convolved
with. To better represent the BRDF from directions approaching the
surface plane we use an anisotropic transformation of the previous
lobe in this step, as suggested by [Pet16]. For that, the following
transformations are used:

µw = 2(ωo ·µd)µd −ωo

λ
x
w =

λd
8 max(µd ·ωo,0.0001)2

λ
y
w =

λd
8

aw = ad

(18)

This anisotropic spherical gaussian can be evaluated with:

G(v;[µx,µy,µz], [λx,λy],a) = (19)

= a ·max(v ·µz,0)e−λx(v·µx)−λy(v·µy) (20)

Where µx and µy are two orthogonal vectors that form a basis
with µz = µw. Any will do, and they need to be transformed together
with µz when applying equation 18.

We can convolve two spherical gaussians G1(v) and G2(v) as
follows:

∫
Ω

G1(v)G2(v)dv =
4πa1a2

eλm

sinh(||µm||)
||µm||

(21)

Where

λm = λ1 +λ2 (22)

µm =
λ1µ1 +λ2µ2

λ1 +λ2
(23)

To convolve each isotropic SG from the light-field texture with
the anisotropic SG approximating the D term, we use:

∫
Ω

G1(v;µ1,λ1,a1) ·GA
2 (v;µ2, [λ

x
2,λ

y
2],a2)dv =

=
a1a2π√

( λ1
2 +λx

2)(
λ1
2 +λ

y
2)

max(µz
2 ·v)e

−(λx
2(v·µ

x
2)

2+λ
y
2(v·µ

y
2)

2). (24)
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Figure 1: From left to right: hair rendered with stochastic transparency, filtered using our method, and the ground truth.

ABSTRACT
Rendering of realistic-looking hair is in general still too costly
to do in real-time applications, from simulating the physics to
rendering the fine details required for it to look natural, including
self-shadowing.

We show how an autoencoder network, that can be evaluated in
real time, can be trained to filter an image of few stochastic samples,
including self-shadowing, to produce a much more detailed image
that takes into account real hair thickness and transparency.

CCS CONCEPTS
• Computing methodologies→ Rendering; Image processing;
Neural networks; Antialiasing.

KEYWORDS
hair, real-time, transparency, filtering, neural networks

1 INTRODUCTION
Rendering realistic hair and fur in real time is still an unsolved
problem. An average human head has on the order of 100,000 hair
strands, and rasterizing that much geometry has only recently be-
come feasible in real time [33]. Hair fibers, being semi-transparent,
scatter light in a complex manner[17], and while approximations
exist[39], rendering hair with correct indirect lighting is still only
possible in off-line renderers.

Even direct lighting from a single light source is complex due to
hair strands being extremely thin (15-200 µm). Common practice
has until recently been to render a simplified textured geometry that
represents several strands. Unfortunately, this method is usually
quite noticeable; it requires a lot of work from artists, and the
simplified mesh is difficult to animate realistically. Thus, recently,
the industry has turned to rendering strand-based hair[6, 33], but
aliasing remains a serious problem.

To avoid aliasing through supersampling, hundreds of samples
per pixel would be required. This, and the fact that hair fibers
are somewhat transparent, has led to approximating hair strands
as thicker semi-transparent lines and resolving the image with
alpha-compositing. Similarly, light-visibility can then be evaluated
with Shadow Map[35] techniques. However, alpha compositing
traditionally requires fragments to be processed in back-to-front
order, and most Order Independent Transparency (OIT) techniques
are either very expensive or give insufficient quality for the high
depth complexity of hair [12, 23, 28].

Following Enderton et al.[7], many stochastic transparencymeth-
ods have hair fragments randomly sampled by discarding fragments
based on their transparency, which leads to unbiased but noisy al-
pha compositing, unless a large amount of samples are taken.

In this paper, we suggest a method for denoising the results of
Stochastic Transparency, which allows for fast rendering of very
complex hair geometry, without noise, while maintaining high
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frequency details. Similarly to recent work on denoising, e.g. path-
traced indirect illumination[5], we train a U-Net[26] with skip
connections to reconstruct a high-quality result from stochastically
rendered input data. Our method achieves high-quality close-up re-
sults, including shadows, at over 60 fps at a resolution of 1024x1024
pixels.

2 PREVIOUS WORK
2.1 Hair Rendering
Kajiya and Kay[9] suggested a first attempt at approximating a
transfer function for hair. More physically accurate models have
since been suggested by, e.g., Marschner et al. [17], Zinke et al. [39],
and Sadeghi et al. [27]. These models produce high-quality results
for off-line rendering, but may be too computationally expensive
for real-time applications. Several real-time approximations have
been suggested [11, 29]. As our suggested method for transparency
is mostly orthogonal to the shading model used, we use the simple
phenomenological model proposed by Scheuermann[29].

Fully evaluating the indirect illumination in hair is still much too
computationally expensive for real-time applications, but treating
hair as being completely opaque leads to very unrealistic results [32].
A common compromise is to render hair as semi-transparent, using
alpha-blending, both for primary rays and shadows. Unfortunately,
most Order Independent Transparency (OIT) methods are very inef-
ficient in cases where depth complexity can be very high. For this
purpose, Sintorn and Assarsson suggest a method for sorting line
segments on the GPU [31] which, however, can be inefficient for
complex hair geometry. The same authors later suggest approxi-
mating a per-pixel visibility function [32], but this method only
works when all fragments have the same opacity, and quality de-
teriorates when the fragments are unevenly distributed. Adaptive
Transparency [28] is a similar method, but the visibility function is
more accurate due to adaptively minimizing the error while ren-
dering. Unfortunately, it has unbounded memory requirements on
current hardware and is quite costly due to the large amount of data
that needs to be saved for each pixel. The method by Münstermann
et al. [23] also estimates a visibility function but with power, or
trigonometric, moments. This results in a low frequency visibility
function and is found by Kern et al. [12] to frequently over or under
estimate visibility. For a survey of OIT methods we recommend the
article by Maule et al. [18].

Rendering shadows cast by transparent objects is similarly dif-
ficult. An early method, intended for off-line rendering, is Deep
Shadow Maps [15], in which an A-buffer is compressed to a piece-
wise linear visibility function per pixel. A real-time alternative,
Opacity Shadow Maps [13], stores discrete functions in a 3D tex-
ture, and in Deep Opacity Maps [38] the depth resolution is im-
proved by maintaining a depth range per pixel. At high resolutions,
these methods use a large amount of memory and require several
rendering passes over the geometry.

Recent approaches to rendering strand-based hair include the
method by Tafuri [33], where alpha blending is avoided and MSAA
is used to reduce aliasing. However, at reasonable sample counts,
this method does not allow for realistically thin hair. For shad-
ows, a few layers of Deep Opacity Maps are used. In a different
approach, suggested by Jansson et al. [8], the hair is voxelized and

ray-marched each frame for distant characters, while for close-up
views, the authors fall back on rasterizing alpha blended lines us-
ing a k-buffer [3]. The voxelized volume can also be used for self
shadowing.

Enderton et al.[7] propose a method for rendering transpar-
ent objects in any order by randomly discarding each fragment
based on its transparency (extending the idea of Screen-door Trans-
parency [22]). Similarly, a stochastic shadow map can be created.
The authors show that this method produces correct results on av-
erage and that a large number of samples per pixel can be achieved
by combining this method with Multi Sample Antialiasing (MSAA).
The technique has since been improved to allow for colored shad-
ows [19]. Laine and Karras[14] show that variance can be reduced
by applying stratification techniques, but this is only suitable for
geometry with few overlapping surfaces. Unless a large amount
of samples are taken, these techniques still produce noisy images.
This noise is even more visible in animations. To reduce temporal
noise, Wyman and McGuire[36] use a hash based on the discretized
model-space position of each fragment to determine whether it
should be discarded. In this paper, we show that images rendered
with Stochastic Transparency with just a few samples per pixel
for primary-ray visibility and a single sample per pixel for shad-
ows can be reconstructed to closely resemble the ground truth,
alpha-blended, result.

2.2 Neural Networks Hair Generation
In our suggested method, a Convolutional Neural Network (CNN)
is used to reconstruct a plausible image from a noisy input. There
exists some previous work on using machine learning to gener-
ate images of hair. For instance, Chai et al.[4] targets generating
realistic-looking hair on real-life images from an input example
and the desired shape, and add temporal conditioning to reduce
the temporal variance. In the work by Wei et al.[34], latent-space
information from processing real-life hair images is gathered and
applied to the input, which consists of a processed rendering of
hair strands. The result is a plausible image at interactive rates, but
the method is not directly applicable to scenarios where control
over local lighting or compositing with a 3D scene is required. Qiu
et al.[25] instead use for input a style reference image and a pro-
cessed hand drawing representing the desired shape of the hair.
Similarly, Qiao and Kanai[24] apply a GAN to transfer the hairstyle
from a reference image to an arbitrarily rendered image. They also
target reproducing realistic lighting on the hair based on the scene.

NeRF-Tex [1] is a method for rendering fur by randomly dis-
tributing volumetric patches over a mesh. A Neural Radiance Field
(NeRF) [21] is trained for the patch, i.e. an MLP with positional
encoding that can approximate the emitted radiance for a given po-
sition, viewing direction, and light direction. The patch intersected
by a primary ray is ray-marched to estimate the radiance in the
viewers direction. This method yields promising results but is still
much too costly for realtime applications.

2.3 Denoising
Much work has been done in attempting to filter out noise from
stochastically sampled images and especially those produced from
path tracing. Some recent methods have used neural networks to
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improve the process. Kalantari et al.[10] use a network to decide
filter parameters to use at each point of an input with few samples,
together with scene information such as surface normals, positions,
textures, etc., and obtain very accurate results. Similarly, Bako
et al.[2] use a convolutional neural network to decide the best
filter kernel for each point of their input features, treating diffuse
and specular information in separate networks. These methods are
intended for offline use, and so expect a higher quality input and
include more complex networks than is feasible in real time.

With the advent of hardware accelerators for raytracing, several
works in real-time denoising for pathtraced images have appeared.
Notably, Chaitanya et al.[5] present a method to filter a very small
number of samples of a pathtraced image with a convolutional
neural network, similar to our work albeit with a rather expen-
sive recurrent topology, and achieve interactive performance. Al-
though the problem solved by this paper (reconstructing contigous
geometry with sparsely sampled illumination) is quite different
from ours (reconstructing sparsely sampled geometry), their ability
to learn high quality filters that can plausibly reconstruct a very
sparsely sampled input image has served as a direct inspiration to
us. Mara et al.[16] suggest another method for filtering Monte Carlo
pathtraced images with real-time performance where, in a similar
manner, they separate "glossy" from "matte" terms during filter-
ing and apply an algorithm based on cross-bilateral filters. They
obtain results comparable to offline methods in less than 10ms of
computation. More recently, Meng et al.[20] use a convolutional
neural network to embed the noisy input in bilateral grids and then
use bilateral filtering on these to produce high-quality results with
real-time performance.

3 METHOD
3.1 Overview
Rendering hair with stochastic transparency results in very noisy
images if few samples are taken, and taking a sufficient number of
samples is expensive, both in terms of computation and memory.
Our approach is to render a few samples with stochastic trans-
parency and train a U-net to reconstruct the original image. As
input to the network, we provide not only color but also additional
features such as tangents and depth, and we show that the trained
network can denoise novel views and even different hair styles with
very good quality. Figure 2 shows a high level diagram describing
our method.

Figure 2: Overview of our method. Stochastically sampled
color factor, highlight, alpha, depth and tangents are filtered
with a CNN to obtain the filtered color factor, highlight, and
alpha, which are composited to produce the final image.

3.2 Input Rendering
The true light transport in hair is very complex and indirect il-
lumination effects are important [17]. In this paper, we consider
only direct illumination and use a simplified approach described
by Scheuermann[29, 30]. The formulas are shown in Figure 3. Real-
time estimates to achieve indirect illumination exist [39] but are
orthogonal to our work.

𝛼𝐻 -𝐿 = cos−1
(
𝑇

∥𝑇 ∥ · 𝑃𝐿 − 𝑃

∥𝑃𝐿 − 𝑃 ∥

)
𝐹𝑑 = sin(𝛼𝐻 -𝐿)
𝐹𝑅 = sin(𝛼𝐻 -𝐿 + 𝛼𝑅)250

𝐹𝑇𝑅𝑇 = sin(𝛼𝐻 -𝐿 + 𝛼𝑇𝑅𝑇 )80

𝐿𝑜 = 𝐿𝑆
(
𝐶𝐻

(
𝐹𝑑 + 𝐹𝑇𝑅𝑇

)
+ 𝐹𝑅

)
Figure 3: Formula for shading hair. 𝐹𝑑 is the diffuse factor;
𝐹𝑅 and 𝐹𝑇𝑅𝑇 are the Reflected and the Reflected-Transmitted-
Reflected specular factors described by Scheuermann[29]; 𝐿𝑜
is the outgoing radiance; 𝑇 is the tangent; 𝑃𝐿 and 𝑃 are the
positions of the light and the fragment, respectively; 𝐶𝐻 is
the color of the hair; 𝐿𝑆 is the intensity of the light source;
𝛼𝑅 and 𝛼𝑇𝑅𝑇 are the specular angle shift values, for which we
use values from the ranges suggested byMarschner et al.[17].
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Figure 4: Diagram of the network used to filter the hair. Con-
volutions are followed by a ReLU. Encoding steps are down-
sampling convolutions, while decoding steps are transposed
convolutions set up to obtain outputs double the size of the
input. All convolutions are followed by ReLU.

To make the network capable of handling arbitrary hair colors,
we separate the outgoing radiance of the hair into two components,
one which is dependent on the color of the hair, (𝐹𝑑 + 𝐹𝑇𝑅𝑇 ) in
Figure 3, and one that only depends on the intensity of the light,
𝐹𝑅 . We refer to these as the color factor and specular highlight
respectively. This separation is discussed further in Section 5. We
also add a small ambient term to the colored component of the
light.

The input to the network is composed of stochastically sampled
values for several features (e.g. color, depth, transparency). To get
more than one sample per pixel in a single pass, we apply the
method from [7], using the coverage mask for a multisample buffer
by setting or unsetting each of the bits with a probability of alpha.
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The average of these samples is still an unbiased estimate but, as
can be seen in Figure 5(c), it is still much too noisy even at high
number of samples. Since rendering the hair at its actual size would
produce aliasing, even at high sample rates, we render it at 1px
width and approximate the real size by baking the area factor into
the alpha value.

The semi-transparency and thin geometry also precludes using
standard shadow-mapping, but Enderton et al. show that a stochas-
tic shadowmap can be created in a similar manner and provides
an unbiased estimator to the light visibility. In our case we, use a
single sample per pixel for self-shadowing.

To reduce temporal noise, wemake use of HashedAlpha Testing[36],
i.e., we create random samples by applying a hash function to the
model-space position of the fragment in such a way that adjacent
points in screen-space will have stable random values.

3.3 Network
3.3.1 Input and Output. The input features to our network are:
the color factor and specular highlight (Section 3), the alpha (trans-
parency) value, the screen-space depth of the sample, and the view-
space tangent (only x and y components, since they are the ones
that will give the directionality information most relevant to our
purpose). Reducing the number of input features improves the eval-
uation time of the network, but we have found that, if removing
either of our chosen features, the gains in performance do not com-
pensate the loss in quality of the result. In Figure 10, we show how
the presence of these features impact the MSE of the training.

The network is trained to reconstruct the color factor, the specu-
lar highlight, and the alpha. To compose the final image, wemultiply
the color factor by the color of the hair, add the predicted highlight,
and blend with the background using the reconstructed alpha.

3.3.2 Architecture. The network is composed of several downsam-
pling convolutions, each reducing the resolution to half of the input
by using a stride of 2. These are followed by the same number of
transpose convolutions, each doubling the resolution of their input,
to upsample the encoded data back to the original size. We use the
downsampling and upsampling properties of the convolutions to
avoid using pooling and unpooling layers and thus reduce the eval-
uation time. As in previous work, to improve quality of the output
of the upsampling steps, skip connections are added between each
pair of down and upsampling layers except for the first one. The
input to the network is not skipped, as that would require an ex-
tra one-to-one convolution which is quite expensive, and we have
not found that this provides much benefit in quality. All convolu-
tions and transpose convolutions are followed by a ReLU, except
for the output layer. Figure 4 shows a diagram of the layers and
connections of the network.

The output of the last convolution is treated specially for each of
the channels, because each represents different kinds of information
that has to fit different ranges. Specifically, the alpha output is
clipped to be between 0 and 1; the color factor output is calculated
as 𝑦 = 𝑥3/32 + 𝑥/5 + 1, so as to provide more precision around 1;
the specular highlight is only clipped to be positive.

We use the MSE of outputs as our loss function. As we do not
care about the value of the color or highlight functions where they
are invisible, we premultiply the color outputs with alpha prior to

calculating the MSE. As the structure of the hair is important, we
additionally add the MSE of image gradients as a secondary loss.

3.3.3 Training and Validation. To train the network, we create
several hundreds of images for two different styles of hair (straight
and wavy - see Figure 9), taken from randomised distances and
orientations of the camera and light. We set aside 10% of these
images to be used as the validation set to verify the correct training
of the network.

The input training data is obtained by rendering the hair with
stochastic transparency, producing multisampled images with the
different features that the network will receive. The target training
data is composed of images rendered at very high resolution and
downsampled to the same size as the input. The hair translucency
is approximated by averaging images rendered with stochastic
transparency in the supersampled resolution, until converged.

The training itself is performed using the PyTorch library. Our
implementation takes between 6 and 12 hours to converge, de-
pending on network size and number of input features. The trained
parameters are then exported to be used in the real-time application.

3.3.4 Inference. For the real-time implementation, we use a combi-
nation of OpenGL and CUDA with cuDNN. First, the input features
are rendered into OpenGL multisampled color buffers. Then, the
result is moved to cuDNN tensors and the convolutional network
is applied. The resulting tensors are copied back to an OpenGL
texture to be composed into the final image.

We make use of the convolution backwards algorithm in cuDNN
to implement the transposed convolution layers, as CuDNN does
not provide a specific API for transposed convolutions.

4 RESULTS
Our experiments are run on an Nvidia RTX 2080, for images of
1024x1024 pixels. The inference time of the network is proportional
to the resolution, and so the numbers presented here are chosen to
represent close-ups at HD resolution.

In order for the network to optimally use the GPU’s tensor cores
for acceleration, we keep both convolution parameters and data
tensors as 16-bit floating point values, stored as NHWC, and the
number of channels of the intermediate tensors as multiples of 8.

Table 1 details the variants of the network we use for the pre-
sented results.

Figure 6 shows the computation times of our method. The time
required to evaluate the network is mostly dependent on the size
of the network, while the time taken to render the input depends
mostly on the number of fragments generated (constant in our ex-
periments) and the number of stochastic samples per pixel. We find
that using 4 samples per pixel and our Base network configuration
gives very compelling results and is about twice as fast as Stochas-
tic Transparency with 16 samples per pixel, which still produces a
noisy output.

In Figure 5, we compare our method to Stochastic Transparency
and, for completeness, to rendering without transparency at high
MSAA rates. While stochastic transparency alone converges to the
ground truth with increasing number of samples, even 16 samples
per pixel produces a noisy output. Disregarding transparency and
relying on MSAA alone is much faster than stochastic transparency
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(a) Stochastic 1spp (3.5ms) (b) Stochastic 4spp (6.5ms) (c) Stochastic 16spp (23ms) (d) MSAAx16 (opaque) (13.5ms)

(e) Base@1spp (6.5ms) (f) Base@2spp (8.5ms) (g) Base@4spp (12.5ms) (h) Ground Truth (200ms)

Figure 5: Result of rendering the hair using different methods: (a), (b), and (c) use stochastic transparency at different SPP; (d)
is the hair rendered with MSAAx16 without transparency; (e), (f), and (g) are the results of our network for different SPP; (h) is
the super-sampled reference image. In parentheses is the total time to render a frame.

Name Samples
per Pixel

Down-
sampling
layers

Channels per layer

Base 4 spp 3 32 > 64 > 128
Base@1spp 1 spp 3 32 > 64 > 128
Base@2spp 2 spp 3 32 > 64 > 128

Large 4 spp 3 64 > 128 > 256
Small 4 spp 3 16 > 32 > 64

Shallow 4 spp 2 32 > 64
Deep 4 spp 4 32 > 64 > 128 > 256

Table 1: The different variations on the input and architecture
used in the various results tables. All networks have the same
number of upsampling layers as downsampling layers, with
a skip layer between each pair, with the exception of the
first layer. The number of inputs depends on the number of
samples per pixel. The output is always 3 channels.

(due to hi-Z culling not being available when discarding samples,
and the cost of computing the hashes), but the hair looks opaque and
does not converge to the ground truth. Our network can reconstruct
acceptable images with only 1 sample, however we find that 4
samples is a good performance/quality trade-off.

9 shows the two hairstyles used for training, as well as the results
when using a different hairstyle not used in the training. We see
that our network generalizes well for that hairstyle as well.

4.1 Network configurations
As can be seen in Figure 7, which compares results for networks
of different sizes, the number of convolution layers determines
the effective filter size. We do not find much visible improvement
with more than 3 convolution and corresponding deconvolutions.
Conversely, in Figure 8, it can be seen that increasing the number
of channels per layer tends to improve the visual results, at the cost
of inference time. We have found the skip connections in the inner
layers to be necessary to get good quality in the results.

4.2 Input parameters
In Figure 10, we show the convergence of the network for different
sets of input features. Providing tangent information is vital for
good results, while depth and alpha give relatively low improve-
ments in MSE. We find that all three features provide large visual
improvements to the image, however.

5 DISCUSSION AND LIMITATIONS
The simplification we use for separating the components of the
radiance as only 3 values per pixel would not be applicable if the
lighting setup was significantly more complex; using multiple differ-
ently colored lights, for instance, is not possible, as there is no way
to differentiate them. Such cases would require to either evaluate
the network several times for each color, or to train the network to
receive and produce RGB values for color and highlight.
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Figure 6: Performance timings for the execution of the net-
work during real-time evaluation (Network Eval. Time), and
the time to render the input for different network sizes (Ren-
der Time). Also included is the time taken for 16 samples of
pure stochastic transparency, and for rendering with only
MSAA, disregarding transparency. Shadowmap Time is the
time taken to render the stochastic shadowmap at a resolu-
tion of 1024x1024, 1SPP.

(a) Shallow (12ms) (b) Base (12.5ms) (c) Deep (14.5ms)

Figure 7: Results for different sizes of the network. Details
for each configuration are in Table 1.

Similarly, the presented algorithm is only intended to work with
hair of uniform color. Training for 3-color channels for the input
and output of the network, which would allow for multi-colored
hair, increases complexity, and we haven’t found it to work straight-
forwardly for RGB color space, but it might be interesting to further
explore in future work.

A remaining problem with the method is temporal stability. We
originally attempted a recurrent architecture as suggested by Chai-
tanya et al. [5], but that provided very little improvement at a high
cost. Temporal reprojection is not easily applied either, since the
high frequency geometry means that a large amount of the samples
are invalid due to occlusion when reprojected. The hashed alpha
method significantly improves temporal stability. However, as can
be seen in the accompanying video, some flickering remains.

(a) Small (11ms) (b) Base (12.5ms) (c) Large (14.5ms)

Figure 8: Results for different numbers of layers in the net-
work. Details for each configuration are in Table 1.
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Figure 9: Results of our network for different hairstyles. The
network was trained with images of both straight and wavy
hair, but it also produces good results for hairstyles not used
in the training.

6 FUTUREWORK
As mentioned in the limitations section, the presented method
requires uniformly colored hair across the same mesh. An improve-
ment would be to allow for any color variation for the hair and the
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Figure 10: Plot of MSE during training up to 250 epochs for
different sets of the input features to the network.

light, including color gradients in the hair, by using RGB channels
or some intermediate color space.

The rendering of the stochastic input constitutes a large part of
the total frame time (Figure 6). In order to achieve higher frame
times, as well as less memory usage, the mesh could potentially
be simplified while having the network still produce good-looking
results.
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